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Abstract

This paper examines the long-term economic impact of climate change
on individuals through the channel of temperature-induced health deterio-
ration. Using a structural life-cycle model calibrated with empirical health
transition data, it simulates how rising temperatures affect survival prob-
abilities, health status, and economic behavior—specifically labor supply,
consumption, and savings—across different climate scenarios. The results
show that higher temperatures reduce life expectancy and lead to earlier
and more severe health shocks, which in turn lower lifetime income. Un-
der pessimistic warming scenarios, the estimated loss in lifetime earnings
reaches approximately $110,000 per person. While the model abstracts
from general equilibrium effects and relies on self-reported health data,
it highlights the significant economic cost of climate change operating
through individual health risks. 1
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1 Introduction

Temperature is a fundamental component of the physical environment, shaping
human activity across multiple dimensions. As climate change alters the global
distribution of temperature, there is growing concern about its broader economic
consequences. While substantial attention has been given to the direct effects
of temperature on labor productivity, agricultural yields, and conflict, less is
understood about how temperature-driven changes in health may propagate
through the economy over the long run.

Health is a critical input into individual well-being and economic perfor-
mance. Variations in temperature can influence the incidence and severity of
disease, the functioning of the human body, and the demand for medical services.
These effects, in turn, may alter labor supply, human capital accumulation, and
lifetime income trajectories. Understanding the economic cost associated with
these health effects is essential for quantifying the full burden of climate change
and for informing effective adaptation policy.

1.1 Related literature

This paper contributes to three main strands of literature: health economics,
the economics of climate change, and the intersection of climate and health.
Each of these fields provides foundational insights but leaves open important
questions regarding the long-run economic consequences of temperature-induced
health variation.

1.1.1 Health Economics

A large literature has documented the central role of health in shaping eco-
nomic behavior over the life cycle. Some studies (De Nardi, Pashchenko, and
Porapakkarm 2025) demonstrate that health status significantly affects labor
supply, retirement decisions, and savings dynamics, establishing health as a key
determinant of productivity and economic welfare. Beyond contemporaneous
productivity effects, poor health imposes substantial intertemporal costs. Both
(De Nardi, Pashchenko, and Porapakkarm 2025) and (Capatina 2015) quantify
the lifetime income and utility losses associated with adverse health trajectories,
emphasizing the compounding nature of health shocks over the life course.

1.1.2 Climate and Economics

The economic impacts of climate change are multifaceted, with temperature
emerging as a particularly influential channel. (Burke, Hsiang, and Miguel 2015)
document substantial aggregate output losses associated with rising tempera-
tures, particularly in countries with limited adaptive capacity. More recently,
(Bilal and Känzig 2024) show that temperature shocks have asset-pricing im-
plications, underscoring the forward-looking nature of climate risks.

At the same time, the literature has explored how extreme heat may exacer-
bate social and political instability. (Hsiang, Burke, and Miguel 2013) provide
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compelling evidence that hotter temperatures increase the likelihood of conflict
in developing countries, suggesting that the consequences of climate change ex-
tend well beyond output measures. Importantly, adaptation has been shown
to significantly mitigate the economic burden of climate shocks. (Carleton et
al. 2022) estimate the global mortality consequences of warming while explic-
itly accounting for adaptation costs and benefits, illustrating how policy and
behavioral responses shape climate damages.

From a methodological standpoint, the empirical identification of climate
impacts presents persistent challenges. (Deryugina and Hsiang 2017), (Hsiang
2016), and (Nordhaus 2019) all highlight the difficulties of isolating causal effects
in the presence of spatial and temporal heterogeneity. (Bilal and Känzig 2024)
further emphasize the econometric complexity involved in measuring forward-
looking responses to climate risks.

1.1.3 Climate and Health

A growing body of work links temperature variation to health outcomes. Bar-
reca et al. (2016) show that the temperature-mortality relationship in the U.S.
has declined substantially over the twentieth century, pointing to significant
adaptation in developed economies. Nevertheless, the potential for major health
shocks remains. The IPCC (2022, Chapter 7) outlines the anticipated health
risks under various warming scenarios, concluding that climate-related health
burdens are likely to intensify even in high-income countries.

1.1.4 Gap in the Literature

While prior research has examined the contemporaneous effects of temperature
on economic output, and others have quantified the cost of poor health on life-
time economic outcomes, little is known about how temperature-induced health
variation translates into long-run income losses at the individual level. More-
over, existing work often abstracts from or aggregates over individual responses.

This Master Thesis addresses this gap by quantifying the lifetime economic
cost of temperature-driven health deterioration in the context of the USA, un-
der current levels of adaptation and within a structural life-cycle framework of
individual decision-making.

1.2 Research question and strategy

The economic consequences of temperature-induced health variation reflect a
fundamental tradeoff embedded in individual decision-making. Higher temper-
atures can deteriorate health outcomes, impairing both physical capacity and
cognitive functioning, which in turn depresses labor productivity and expected
longevity. These changes can have long-lasting effects on income profiles, par-
ticularly when health deteriorates early in life.

Yet even in the absence of institutional responses or targeted health invest-
ments, individuals may adjust their economic behavior in response to deteri-
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orating health. A worsening health trajectory may lead agents to reoptimize
by altering labor supply, savings, or consumption paths. These behavioral re-
sponses—though constrained—can partially absorb the economic shock. The
key question is then whether such individual adjustments are sufficient to mit-
igate the lifetime income loss induced by temperature-related health shocks,
or whether the long-run economic cost remains substantial despite endogenous
reoptimization.

This tension motivates the central research question of this paper: How
do temperature-induced health shocks affect individuals’ lifetime income, when
only individual-level behavioral responses are allowed, and what are the eco-
nomic mechanisms through which these effects propagate?

To address this question, the analysis proceeds in two stages. First, an
empirical investigation quantifies the causal impact of temperature variation on
individual health status. Using micro-level data, the analysis estimates how both
short-term and sustained exposure to high temperatures affect health outcomes
across demographic groups and age cohorts.

Second, these empirical estimates are embedded into a structural, life-cycle
model of individual behavior. In the model, health enters as a state variable
that evolves over time and affects both survival and future health probability
distribution. Individuals maximize lifetime utility by choosing labor supply
and consumption paths, taking health dynamics as exogenous but responsive to
temperature. Crucially, the model does not incorporate health investment or
collective adaptation, isolating the role of individual optimization.

By simulating the model under alternative temperature scenarios, the anal-
ysis computes the long-run income losses attributable to temperature-induced
health shocks. These results yield a quantitative assessment of the intertempo-
ral economic cost of climate-related health deterioration, under a benchmark of
minimal adaptation.

2 Setting

This section introduces the dynamic environment in which individuals evolve
over time. We provide a formal description of the mechanisms governing health
and survival outcomes in response to exogenous weather realizations. The
framework abstracts from individual choices and focuses on the stochastic pro-
cesses linking temperature exposure, health dynamics, and mortality risk.

In each period, individuals are exposed to a realization of weather conditions.
Conditional on this realization and their past health trajectory, they draw a
new health status and face a probability of survival into the next period. These
outcomes evolve according to reduced-form transition functions, which will later
be estimated empirically.

The section proceeds as follows. The first subsection introduces the formal
structure of the health and survival processes. The second subsection presents
the individual-level panel data used to estimate these relationships in the sub-
sequent section.
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2.1 Formal Description

2.1.1 History Vectors

We begin by describing the framework in general terms, abstracting from em-
pirical constraints. In this general formulation, an individual’s health at time t
is modeled as part of a history vector Ht ∈ Ω(H)t, which records the sequence
of health states experienced from the first period up to time t:

Ht = (H1, H2, . . . ,Ht).

Similarly, the sequence of weather conditions encountered by an individual
is captured by a weather history vector Wt ∈ Ω(W )t:

Wt = (W1,W2, . . . ,Wt).

These vectors serve to characterize the information available for determining
health and survival outcomes at time t.

2.1.2 Health Status

Let Ht ∈ Ω(H) denote the health status of an individual at time t, where Ω(H)
is a finite, ordered set representing possible health states. The evolution of
health over time is governed by a stochastic process, with the distribution of Ht

depending on the individual’s prior health trajectory and experienced weather
conditions.

Formally, we model health status at time t as a random draw from a condi-
tional distribution:

Ht ∼ fh(Ht−1,Wt),

where fh is a transition function mapping past health and current weather
exposure into a probability distribution over Ω(H).

2.1.3 Living Status

Let Lt ∈ {0, 1} denote the living status of an individual at time t, where Lt = 1
indicates survival and Lt = 0 indicates death in that period. Survival is modeled
as a Bernoulli random variable with success probability pt:

Lt ∼ B(pt).

In the general framework, we allow the survival probability pt to depend on
an individual’s full health history Ht and weather exposure Wt. Accordingly,
we write:

Lt ∼ B(pt(Ht,Wt)).

This specification captures the idea that survival probabilities may be shaped
by accumulated health conditions as well as contemporaneous or historical
weather shocks.
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In the general setting, we allow the full health and weather histories to
influence subsequent transitions. However, in the empirical implementation
presented later, we impose simplifying assumptions, such as using only recent
health status and contemporaneous weather conditions, to improve tractability
and address data limitations.

2.2 Data

This study combines three primary data sources to estimate the relationship
between temperature, health, and survival outcomes. Individual-level health
and mortality information is drawn from the Health and Retirement Study
(HRS). Annual temperature data are obtained from the Berkeley Earth Surface
Temperature project. Macroeconomic variables are sourced from the Federal
Reserve Bank of St. Louis (FRED) database.

2.2.1 HRS Data

This study uses data from the Health and Retirement Study (HRS), a biennial
panel survey of individuals aged 50 and older in the United States. In addition
to the core survey, the HRS includes an exit interview administered to proxies
of respondents who have died since the last wave. The exit survey is used to
identify deceased individuals, whose living status is recorded as 0 in the year of
death.

Individuals are included in the analytical sample if they were observed in the
wave immediately preceding their death. To avoid confounding effects related
to COVID-19 mortality, the sample is restricted to survey waves up to and in-
cluding 2018. Surveys from 2000 and earlier are excluded due to inconsistent
variable coding.

The final dataset includes the following variables: survey year, individual
age, living status, and health status. Age is computed as the difference between
the survey year and the respondent’s reported year of birth. Living status is
coded as 1 if the individual appears in the main survey and 0 if they appear
only in the exit survey. Health status for deceased individuals is imputed from
their most recent observation prior to death.

Health is proxied using a self-reported categorical measure consistently avail-
able across all survey waves. Respondents are asked to classify their general
health into one of five categories: Excellent, Very Good, Good, Fair, or Poor.
Responses coded as 8, –8, or 9, corresponding to missing, non-response, or
refusal, were excluded from the final sample. They represented less than 30
observations in total and are not expected to materially affect the analysis. Al-
though self-reported health lacks the precision of composite indices based on
clinical markers, prior studies have shown it to be highly correlated with both
morbidity and mortality. Its availability across all waves and simplicity of inter-
pretation make it a tractable measure of overall health status in this context.
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In addition, a secondary health proxy, HPi,t, is constructed using binary
indicators for four self-reported chronic conditions: high blood pressure, lung
disease, heart condition, and stroke.

Figure 1 provides an overview of the health status distribution over time.
Each bar corresponds to a survey wave, with segment colors indicating the
number of individuals reporting each health status category. Unlike proportion-
based plots, which normalize distributions, this count-based representation high-
lights both the evolution of health composition and the variation in the number
of observations across survey waves.

Figure 1: Health Status distribution per Year, from the HRS data.

2.2.2 Climate Data

Temperature data are drawn from the Berkeley Earth project’s Land Monthly
Average Temperature dataset, which reports monthly global land surface tem-
perature anomalies through time. Anomalies are measured relative to the
1951–1980 baseline, with 95% confidence bounds provided for each month. Fig-
ure 2 shows the upward trend in global average land temperature over time.

The analysis uses global average annual temperature as the climatic variable.
This measure offers a tractable and transparent proxy, avoiding the complexity
of regional variation while remaining informative.

Four temperature trajectories are considered for simulation. The historical
path rises from 0 to 1.5°C between the mid-20th and mid-21st century. Three
additional scenarios, drawn from IPCC projections for 2000–2100 and starting
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at 0.5°C, reflect broader possibilities: a pessimistic path reaching 4°C, an in-
termediate path reaching 3°C, and an optimistic path stabilizing at 2°C. These
benchmark paths allow for structured comparisons of long-run effects on health
and income.

Figure 2: Evolution of Global Average Annual Temperature (1900–2022)

The dark blue line plots the global average temperature anomaly relative to the
1951–1980 baseline. The light blue shaded area shows the 95% confidence interval
around each year’s estimate, as provided by the Berkeley Earth dataset.

2.2.3 Economic Data

Finally, economic data from the Federal Reserve Bank of St. Louis (FRED)
are used for two purposes. Annual U.S. Gross Domestic Product (GDP) figures
are employed in preliminary estimation exercises, while the long-run average
interest rate is used to calibrate the discount factor in the economic model.

3 Estimation of Health and Survival Dynamics

This section presents the empirical framework used to estimate the relationships
between temperature, individual health trajectories, and survival probabilities.
Using microdata from the Health and Retirement Study (HRS), we focus on
modeling health transitions and mortality risk as functions of recent health
status, temperature exposure, and age.
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We begin by modeling health dynamics through an ordered response ap-
proach that leverages the five-category self-reported health variable. We then
estimate survival probabilities using a binary outcome model, again accounting
for health and temperature effects. To address concerns of omitted variable
bias and potential collinearity, we introduce a Health Proxy, which allows for a
tractable way to represent how temperature might affect transitions via acute
health risks.

The resulting estimates capture a reduced-form effect of climate variation
on health and survival, through a group of health risk, and serve as key inputs
for the economic model introduced in the next section.

3.1 Health Transition

The Health and Retirement Study (HRS) provides detailed longitudinal data on
individuals’ self-reported health, captured across five ordered categories. To pre-
serve the richness of this variable, it is not recoded into a binary indicator (e.g.,
“Good” vs. “Bad”) but retained in its full ordinal form, with H ∈ {1, . . . , 5}
representing states from “Excellent” to “Poor” health.

Given the ordered and discrete nature of the outcome, health transitions are
modeled using ordered response models. Specifically, the ordered logit, due to
its tractability and widespread use in the literature Wooldridge 2010.

For computational and identification reasons, we restrict the information set
determining current health status to the most recent lag and contemporaneous
temperature. That is, rather than modeling the full dependence fh(Ht−1,Wt),
we simplify the transition function to:

fh(Ht−1, Tt),

where Tt is the average annual temperature at time t.
Since health status takes values in a finite, ordered set, fh defines a categor-

ical distribution (sometimes referred to as a generalized Bernoulli), and can be
expressed as a transition function indexed by previous health status:

fh(Ht−1 = j, Tt) = fh,j(Tt), ∀j ∈ {1, . . . , 5}.

To estimate these transition probabilities, one could consider a direct ordered
logistic regression with Ht as the dependent variable, and age, temperature,
and other controls as covariates. However, this naive approach faces two major
challenges. First, omitted variable bias: many unobserved factors, such as access
to care or behavioral choices, can affect both health and survival. Second,
collinearity: economic controls (such as GDP or health expenditures) are often
strongly correlated with temperature trends, making it difficult to isolate causal
effects.

Moreover, interaction effects between covariates are likely important. For
example, the impact of a given health state on future transitions may differ
substantially by age: “Fair” health at age 30 has different implications than at
age 80.
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To address these concerns, we introduce a two-staged-regression inspired
strategy.

We define a composite health shock measure, the Health Proxy (HPi,t), cap-
turing the burden of recent temperature-sensitive health incidents. This proxy
is constructed as the sum of binary indicators for the presence of the follow-
ing four health conditions: High blood pressure, Lung disease, Heart condition,
Stroke. Formally:

HPi,t = HighBPi,t + Lungi,t +Hearti,t + Strokei,t

We first estimate a linear model for HPi,t as a function of age and temper-
ature:

ĤP
I

i,t = β̂0 + β̂A ·Agei,t + β̂T · Tt + β̂A×T · (Agei,t × Tt)

This first-stage regression provides a filtered proxy for temperature-induced
health risks, which is then used in a second regression to estimate health tran-
sition probabilities. Specifically, we regress the probability of transitioning to
a new health state on previous health status and the predicted health proxy

ĤP
I

i,t, thus controlling for age and filtering out temperature’s indirect effects
via acute health events. This two-step strategy allows us to better identify the
effect of temperature on acute health state dynamics while mitigating omitted
variable bias and accounting for age interactions.

The first-stage regression results, presented in Table 1, provide empirical
support for the construction of the Health Proxy as a function of age, tempera-
ture, and their interaction. As expected, age is a strong and significant predictor
of acute health conditions, with each additional year associated with a 0.02 in-
crease in the composite health burden measure (p < 0.001). The standalone
effect of temperature is negative but statistically insignificant, suggesting that
average annual temperature alone does not systematically explain acute health
conditions in this sample. However, the interaction term between age and tem-
perature is positive and statistically significant at the 1% level. This indicates
that the effect of temperature on health burden intensifies with age—a key

channel motivating the use of ĤP
I

i,t as a mediator in the second stage. While
the model explains only a modest portion of the variance in health conditions
(R2 = 0.086), this is expected given the many unobserved factors—such as ge-
netic predisposition, lifestyle, or access to care—that drive acute health events.
However, our primary goal is not to fully explain health shocks, but rather to
isolate the marginal effects of temperature and age. In that respect, the signif-
icant interaction between age and temperature supports the interpretation of
the Health Proxy as a temperature-sensitive health shock, particularly among
older individuals.
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HP

(Intercept) -0.487***
(0.068)

Age 0.020***
(0.001)

Temperature -0.032
(0.123)

Age × Temperature 0.005**
(0.002)

N 182,947
R2 0.086

Table 1: Regression of Health Proxy on Age, Temperature, and their interaction.

Estimated Health Transition Probabilities. The two following figures
depict the estimated probabilities of transitioning across self-reported health
states as a function of age, conditional on the current health status. The five
health categories considered are Excellent, Very Good, Good, Fair, and Poor.
These transition probabilities provide a dynamic picture of health deterioration
(or improvement) over the life cycle. For clarity purposes, temperature was not
included in these graphics to avoid 3D plotting. 2

From excellent health, the probability of remaining in this health state de-
clines steadily with age, while the proba bility of transitioning to Very Good
health increases. Transitions to lower health states (Good, Fair, Poor) remain
unlikely but grow slowly over time. This indicates that while aging naturally
erodes top health status, the decline is gradual and dominated by moves to
slightly lower but still positive states.

2. Further graphical representations of transition probabilities are available in the Ap-
pendix.
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Figure 3: Transition probabilities from Excellent Health

In the opposite case, the probability of remaining in Poor health increases
markedly with age, surpassing 60% by age 100. Improvements to better health
categories become virtually negligible with age, suggesting that Poor health is
largely an absorbing state for older individuals.

These estimated transition probabilities highlight the persistent and age-
dependent nature of health status. They support the modeling assumption of
a health process that becomes increasingly inertial with age, and they reflect
the empirical reality that upward health mobility becomes rarer in older pop-
ulations. This framework is essential for evaluating how external shocks—such
as temperature-driven health shocks—interact with baseline health dynamics
across the life cycle. Based on these estimates, it is alread possible to perform
simulations of different groups of individuals with specific temperature trajec-
tories. 3

3.2 Living Status

The binary nature of the living status variable allows for a straightforward
application of logistic regression.

To estimate the survival probability pt(Ht,Wt), a naive regression approach
would encounter similar issues to those previously discussed. For instance, esti-
mating a regression using only GDP as a covariate leads to a negative coefficient

3. A specific illustration is available in the Appendix.
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Figure 4: Transition probabilities from Poor Health

not only on temperature but also on GDP. This counterintuitive result reflects
a recent trend in the United States, where GDP has continued to grow substan-
tially, while life expectancy has remained stagnant or slightly declined. As such,
preliminary results showed the necessity of adapting the regression specification,
as it is done by the Health Proxy HPi,t, as explained above.

Using the logistic function Λ(·), we estimate the individual survival probabil-
ity pi,t at time t via the following specification, which incorporates the previously

estimated health proxy ĤP
I

i,t:

p̂i,t = Λ
(
β̂0 + β̂H ·Healthi,t + β̂HP · ĤP

I

i,t

)
(1)

By combining the health transition probabilities with these survival prob-
ability estimates, we can simulate and visualize the demographic dynamics of
a population over time. This is illustrated in the next figure, which shows the
annual survival probability as a function of both age and health status, based
on an initial population of N0 = 10,000.
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Figure 5: Annual probability of survival as a function of age and health status,
obtained with N0 = 10,000.

Higher temperatures can exacerbate acute health conditions, particularly
among vulnerable populations such as the elderly or those with pre-existing
health issues. For instance, extreme heat has been linked to cardiovascular
stress, respiratory complications, and increased incidence of heat-related ill-
nesses. These acute conditions can accelerate transitions from better to worse
health states and elevate mortality risk. Furthermore, temperature interacts
with age in a non-linear fashion. Older individuals generally have reduced
thermoregulatory capacity, making them more susceptible to heat stress. As
a result, even moderate increases in temperature can disproportionately affect
their survival probabilities and hasten deterioration in health status. Therefore,
the negative coefficient on temperature is not merely a statistical artifact but
reflects real physiological and epidemiological mechanisms. This compound in-
fluence (affecting both the likelihood of transitioning to a worse health state and
the immediate probability of survival) drives the overall negative relationship
between temperature and life expectancy observed in our model.

These estimates are now going to be used in the economic model.

4 Model

This section is dedicated to the formal description of the model, as well as its
analytical analysis. First, its main mechanisms will be explained, and then, the
nonexistence of analytical solution in most cases will be shown.
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4.1 Baseline specification

The agents maximize:

max
{ct,lt,st+1}100

t=1

E

[
100∑
t=1

βt · u(ct, lt)

]
Their utility function is:

u(ct, lt) =
c1−ρ
t

1− ρ
− ξt ·

l1+φ
t

1 + φ

With :
- ct the consumption
- lt the quantity of labor supply provided by the agent
- ht the health status
- wt the weather variable, which is here temperature
- ξt the labor disutility coefficient
- ρ the risk aversion coefficient
- φ the Frisch elasticity of Labor supply.

The agent is subject to the following budget constraint:

ct + st+1 ≤ lt · zt + st · (1 + rt)

With:
- ct the consumption at period t
- st+1 the savings for period t+ 1
- lt the labor supply provided by the agent at period t
- zt the productivity at time t
- st the savings available at the beginning of period t
- rt the interest rate at period t
Also, agents are subject to the following borrowing constraint, defined as:

st+1 ≥ s,∀t ∈ [[1, T ]]

We can note the First Order Conditions, such that:

c−ρ
t · zt = ξt · lφt ⇐⇒


ct =

[
ξt·lφt
zt

]− 1
ρ

lt =
[
c−ρ
t zt·
ξt

] 1
φ

(2)

And
c−ρ
t = β · E

[
c−ρ
t+1 · (1 + rt+1)

]
+ γt (3)

The first corresponds to the equalization of marginal benefit and cost of
labor, and the second corresponds to the Euler equation.

The first equilibrium condition implies an within decision, driven by the
labor disutility coefficient ξ and the productivity z. There is a unique mapping
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between consumption and labor at any period, to equalize the benefits and the
costs of labor.

The second equilibrium condition implies an intertemporal decision. The
marginal utility of consumption at one period must be equal to the expected
marginal utility of consumption next period, discounted by the discounting fac-
tor β and the interest rate next period (1 + rt+1), plus the marginal benefit of
violating the borrowing constraint at the current period.

It is now important to describe what the Expectation operator E entails
here. In a generic formulation, one could expect the uncertainty to affect the
interest rate at the next period, which is the reason (1 + rt+1) is within the
operator.

Another specification could exclude any uncertainty from the interest rate.
The uncertainty could then come from the health and survival draw. If the
uncertainty only comes from these two draws, the expectation operator can be
formalized such as:

E [ct+1] ≡ pt+1(Ht,Wt) · ct+1

4.2 Analytical Solution nonexistence

Proposition This maximization program is impossible to solve analytically in
most cases4.

If we consider the model altogether, it is impossible to describe analytically
the optimal policy functions of the three choice variables. While the entire
proof is available in the appendix, a quick explanation is possible here. First,
the objective functions is linear with the savings at next period st+1, making
it disappear from the F.O.C.s. This term requires therefore the labor and con-
sumption policies to be solved, and then plugged into the budget constraint, to
have a solution. However, if we try to solve the two other policy functions, we
end up with transcendental equations of the form a·xα+b·x+c = 0, with α /∈ N.
These transcendental equations can be overcome with specific combinations of
parameters, but these are however absurd in our context. This nonexistence
of analytical solution calls therefore for a numerical solving of the model. The
next section discusses the different methods used in order to do so.

5 Numerical methods

Several ways have been considered to solve this model numerically. This sec-
tion is dedicated to the presentation of the different methods used in order to
do so. First, the auxiliary functions are presented. Second, the different main
algorithms specifications and their performance are presented. Finally, the ag-
gregation methods and different numerical results are discussed.

4. The proof of this proposition is in the Appendix.
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5.1 Functions

This subsection is dedicated to the description of the fundamental programmatic
functions that were used to solve the model numerically.

• Budget clearing function: The budget clearing function computes the
amount of non used income for a set of state and choice variables. Since at
optimal, the budget constraint is binding, the underlying theoretical result
indicates that the budget clearing function should be zero. Given the
imprecision of numerical methods, the average budget clearing function
was used as a measure of the precision performance of each algorithm.

It is equal to:

B(st, lt, ct, st+1) = lt · zt + st · (1 + rt)− st+1 − ct

• Bellman function: The Bellman function takes as an argument the
value function next period, and maximizes the current utility plus the
discounted value function next period.

It is equal to:

V (st) = max
{ct,lt,st+1}∈Γ(st)

{u(ct, lt) + β · V (st+1)}

With Γ(st) the feasibility set given by the state variable st.

• Backwards function: The backwards function iterates the Bellman
function from the last period to the first one. In the case of policy it-
eration, it iterates over the policy function, and not the value function.
It aggregates the optimal decisions and returns a grid of optimal choices
associated to each period and state variable value.

For the pure numerical value function iteration, the backwards function is
as following:
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f o r t from 100 to 1

i f t i s equal to 100
Bellman next per iod = Vector o f z e r o s

end

f o r s in the p o s s i b l e s e t o f s
f o r c , l , s ’ in the f e a s i b l e s e t o f the cur rent s va lue

# We compute the budget c l e a r i n g :

bc = budge t c l e a r i ng ( c , l , s ’ )

# I f i t does not ,
# we s e t the value func t i on to a very low number .

i f bc < 0

V[ c , l , s ’ , s ] = −I n f

# I f i t does , we compute the value func t i on
# f o r t h i s combination o f cho i c e v a r i a b l e s .

e l s e i f bc >= 0

V[ c , l , s ’ , s ] =
u t i l i t y ( c , l , s ’ ) +
beta ∗ p r obab i l i t y o f s u r v i v a l ∗
Bellman next per iod [ s ’ ]

end
end

# We se t the value func t i on f o r s and t to
# the maximum value found .

end

# We se t the value func t i on at next per iod to cur rent one
Be l lman next per iod = Value funct i on [ index s , t ]

end

Figure 6: Pseudo-code of the backward function.

5.2 Algorithms

This section details the different algorithms built upon the above-mentioned fun-
damental functions. Indeed, if one can think of the pure numerical value function
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iteration to solve the model, multiple approaches exist, that vary depending on
the targeted tradeoff between precision performance and speed performance5.

5.2.1 Pure numerical value function iteration

The pure numerical value function iteration algorithm consists in verifying all
possible combination of choice variables for each level of state variable to deter-
mine what is the best possible response given a certain amount of state variable.

Here, the algorithm goes through all the possible values of c, l, and s′, with-
out using any approximation obtained through the FOC mentioned above. This
is quite computational-intensive, but has the advantage of not using analytical
results, which can lead to approximation depending on the resolution of the
ranges used.

5.2.2 F.O.C. approximated value function iteration

The FOC approximated value function iteration algorithms make use of the two
expression of consumption and labor supply derived from the FOC seen in the
previous section. They are faster by orders of magnitudes when compared to
the pure numerical value function iteration algorithm, but contain more errors,
measured by the budget clearing function6.

5.2.3 Interpolated algorithms

The interpolated algorithms use interpolation techniques to approximate the
value of the next period Bellman equation. This interpolation can be imple-
mented in the pure numerical algorithm, and in the FOC-approximated ones.

They allow for a smoother shape of policy function, and have graphical
results that are more easily interpretable. However, their speed performance
is slightly worse, and the effect of interpolation on precision performance is
ambiguous.

5. For more information, the different steps of the algorithms and their source code are
available online. The steps and comments of the present work are available here: https://
www.paulogcd.com/Master Thesis/, and the documented replication package, coded in Julia,
is available here: https://www.paulogcd.com/Master Thesis Paulogcd 2025/.

6. Note that it is impossible to use the second FOC, i.e. the Euler equation, containing the
Lagrangian multiplier γt. However, the numerical solving process allows for an estimation of
γt.
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5.3 Performance

Algorithm Error Time (in seconds) Memory (in Mb)

Pure Numerical Value
Function Iteration

0.0179 0.6604 1033.4409

FOC approximation 1
(fixing labor supply)

0.042 0.2506 98.1834

FOC approximation 2
(fixing consumption)

0.042 0.0188 55.6981

Figure 7: Algorithms and their performance.
These results were obtained from reduced ranges, but scale exponentially.

5.4 Policy Function Results

This subsection is dedicated to the presentation of the policy function results
from the numerical methods.

The calibration was done following the used in the found literature, and in
order to make the numerical resolution possible. The interest rate and discount
factor were obtained after averaging the past interest rate, from the FRED data
mentioned previously.

Table 2: Model Parameter Values

Parameter Value

Risk aversion coefficient (ρ) 1.50
Labor supply Frisch elasticity (φ) 2.00
Discount factor (β) 1

1+r ≈ 0.9825

Annual interest rate (r) 0.0178 (1.78%)
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Figure 8: Consumption policy per age category obtained from the pure numer-
ical value function iteration

The labor policy shows the increasing effect of age on the elasticity between
savings and labor income, due to decreasing survival probabilities.

The savings policy is decreasing with age, reflecting the lower survival prob-
abitilies as the agents become older. In the last years, the agents desave, and
tend to consume everything they have left.

Figure 9: Labor policy per age cat-
egory

Figure 10: Savings policy per age
category

6 Results

This section is dedicated to the presentation of the results of the comparison of
the life time income between agents in different temperature scenarios.

6.1 Lifetime income

To perform a comparison between different temperatures scenarios, we first need
to precisely characterized the comparison reference, i.e. the lifetime income.
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A simulation was conducted using a projected temperature trajectory rang-
ing from 0.00 to 1.50 degrees Celsius. This range approximately reflects the
temperature increase experienced by the cohort born in the 1950s.

According to data from Tamborini, Kim, and Sakamoto 2015, the estimated
lifetime earnings (in 2020 dollars) for individuals with less than a high school
education (LTHS) are $1,178,000 for men and $586,000 for women, yielding an
average of approximately $882,000. For high school graduates, the correspond-
ing figures are $1,825,000 for men and $1,351,000 for women.

In light of these benchmarks, a reference value of $1.45 million was selected
to represent a moderate level of lifetime earnings. This serves as the baseline
for estimating the economic consequences of temperature-related health shocks
over the lifespan of this cohort.

It is important to note, however, that this estimate likely understates the true
cost of such shocks. The Health and Retirement Study (HRS) data used in the
health transition modeling includes a broader and more educated sample than
the average LTHS population. Numerous studies have established that higher
educational attainment is associated with improved health outcomes and longer
life expectancy. As a result, the health impacts derived from the HRS data
are expected to be less severe than those experienced by less educated individu-
als. Consequently, the simulated economic burden associated with temperature-
induced health deterioration may be conservatively estimated.

6.2 Comparison

This subsection is dedicated to the comparison between populations having
different temperature trajectories.

First, survival probabilities will be compared, then, the policy functions will
be compared (consumption, labor, savings). Finally, the lifetime income will be
compared.

The 4 temperature trajectories compared are:

• The past temperature trajectory: From 0.01 to 1.5

• The optimistic scenario: From 0.61 to 2.0

• The intermediate scenario: From 0.61 to 3.0

• The pessimistic scenario: From 0.61 to 4.0
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6.2.1 Demographic comparison

Figure 11: Survival probability comparison

The following demographic comparison illustrates the heterogeneous impact of
varying temperature trajectories on population survival probabilities across the
life cycle. The depicted survival curves reveal a clear downward shift and ac-
celerated decline under more adverse climate scenarios (intermediate and pes-
simistic), particularly at older ages. This suggests a significant temperature-
induced mortality risk, consistent with findings in environmental epidemiology
linking higher temperatures to increased incidence of acute health events and
exacerbated chronic conditions. The divergence in survival probabilities across
the simulated temperature paths underscores the substantial demographic con-
sequences of unchecked climate change, implying a contraction in expected lifes-
pan and a potential alteration of the age structure of the population. These
demographic shifts, in turn, have profound implications for labor supply, hu-
man capital accumulation, and the sustainability of social insurance systems,
as explored further in the subsequent analysis of policy functions and lifetime
income.

6.2.2 Policy functions comparison

One possible way to compare policy functions across populations are the com-
putation of a policy function average throughout all ages.
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Figure 12: Consumption policy comparison

Figure 13: Labor policy comparison

The comparison of optimal policy paths across varying temperature trajec-
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tories reveals a discernible loss attributable to demographic dynamics. Specif-
ically, this loss arises from temperature-induced shifts in survival probabilities
over time. As higher temperatures adversely affect health transitions and in-
crease mortality risk (particularly among older or more vulnerable individuals)
the resulting demographic structure alters the expected lifetime utility and eco-
nomic behavior of agents.

This demographic distortion reduces the effectiveness of policy instruments
optimized under baseline conditions, thereby generating inefficiencies. The mag-
nitude of the loss reflects both the direct impact of elevated temperatures on
survival probabilities and the indirect effect on population composition, labor
force participation, and the intertemporal allocation of resources. In this con-
text, the demographic channel becomes a critical mechanism through which
climate change translates into long-term economic costs, even in the absence of
immediate productivity shocks.

6.2.3 Lifetime income comparison

The deterioration in lifetime income resulting from temperature-related health
shocks is substantial and operates through multiple, compounding channels. El-
evated temperatures are empirically associated with a higher incidence of acute
health events—such as cardiovascular and respiratory crises—that not only in-
crease short-term morbidity and mortality but also reduce long-term functional
capacity. These effects are particularly pronounced among older adults and in-
dividuals in fragile health, whose ability to remain in the labor force or engage
in productive activities declines disproportionately.
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Figure 14: Expected lifetime labor income, at each period.

Simulations suggest that even modest increases in average temperature over
the life course can translate into significant reductions in expected lifetime in-
come. This arises not only from premature mortality but also from suboptimal
health states that lower utility and earning potential throughout the individual’s
remaining life. Therefore, the macroeconomic cost of climate-related health de-
terioration should be understood as not merely a public health challenge but a
fundamental constraint on human capital and economic resilience. In this sense,
the lifetime income loss induced by change in survival probabilities due to acute
health conditions provoked by temperature changes amounts to approximately
$110,000 of 2020, when taking the lifetime income of the High School Graduates
of the 1950s generation ($1.45 Mio) as the reference point.

7 Discussion

This paper quantifies the lifetime economic cost of temperature-induced health
deterioration by integrating empirical estimates of health and survival dynam-
ics into a structural life-cycle model. The results highlight two key mecha-
nisms: (1) temperature-driven health shocks reduce survival probabilities, par-
ticularly among older and vulnerable populations, and (2) these shocks propa-
gate through individual adjustments in labor supply, savings, and consumption,
culminating in significant lifetime income losses (approximately $110,000 per
capita under pessimistic warming scenarios).

The estimated policy functions align with life-cycle theory: savings peak
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in mid-life and decumulate with age, while labor supply declines as health de-
teriorates. This attempts to complement the literature on climate-economy
feedbacks (Burke et al., 2015; Bilal & Kanzig, 2024) by isolating the role of
health-mediated channels absent collective adaptation.

The empirical health transitions, estimated via a two-stage ordered-response
framework, confirm that temperature exacerbates acute conditions (e.g., cardio-
vascular stress) and accelerates transitions to poorer health states. This mirrors
findings by Barreca et al. (2016) on temperature-mortality adaptation but ex-
tends them to the economic individual choices.

7.1 Limitations

Nonetheless, this present work suffers from multiple methodological limitations.
First, by its econometrical strategy to assess the relationships between health,

temperature, and survival. Nordhaus called Climate Change ”The Ultimate
Challenge for Economics” (Nordhaus 2019), did the current work manage to
tackle it? Needless to say, the econometric strategy of the current work is far
from being flawless. The use of two estimates in the detailed three stages re-
gression approach still does not eliminate estimation bias.

Two other elements add up to the inherent econometric hurdle of temper-
ature causal inference First, due to the reliance on the Self-Reported Health.
This reliance may understate severe clinical conditions. Future work could inte-
grate biomarkers (e.g., NHANES data) to capture latent health risks. Second,
due to the limitations of the proposed and used Health Proxy, that does not
capture fully neither isolate perfectly the effect of temperature on health.

At this stage, it is important to acknowledge that, while the proposed es-
timation strategy may be subject to bias and potential collinearity with omit-
ted variables, it nonetheless serves a meaningful purpose within the context
of the model. Although establishing strict causal inference is constrained by
data limitations and identification challenges, the estimated relationships still
offer valuable descriptive insights into the dynamics between temperature and
health outcomes. In this regard, the economic model built upon these estimators
provides a credible framework for exploring and quantifying the broader eco-
nomic consequences of temperature-induced health shocks. Rather than seeking
definitive causal claims, the model emphasizes the structural and behavioral im-
plications of observed patterns, thereby offering a clearer understanding of how
environmental stressors translate into long-term economic costs.

Another important limitation of this work comes from its integration of
temperature variability: Using annual averages masks acute shocks (e.g., heat-
waves), which may have nonlinear effects on health (IPCC, 2022). High-frequency
data could refine the health proxy.

The third major flaw of this work is its abstraction from general equilibrium
effects (e.g., wage adjustments, health investment). A richer framework could
include endogenous labor demand or public adaptation policies.

Finally, it could be interesting to introduce educational heterogeneity for two
reasons. Not only would it create heterogeneity at the productivity level, but
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it would also interact with the health and survival probabilities. Furthermore,
the baseline lifetime income estimate ($1.45M) likely understates costs for less-
educated groups, who face higher climate vulnerability (Deryugina & Hsiang,
2017). Disaggregating by socioeconomic status could be a priority for future
research.
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9 Appendix

9.1 Health Transition Probabilities

Figure 15: Transition probabilities from Very Good Health

Figure 16: Transition probabilities from Good Health

Figure 17: Transition probabilities from Fair Health
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9.2 Health simulation

Figure 18: Annual average health status as a function of temperature scenarios.

9.3 Proof of Impossibility

This section is dedicated to the proof that the maximization program has no
analytical solution in most cases.

Iwill show this absence of analytical solution by attempting to solve it in
three different ways: First by using the Budget Constraint binding, then by
using the F.O.C. and the Budget Constraint, and lastly trying to go to the last
period to solve it recursively.

9.3.1 Maximization program

max
{ct,lt,st+1}100

t=1

E

[
100∑
t=1

βt · c1−ρ
t

1− ρ
− ξt ·

l1+φ
t

1 + φ

]
Subject to budget and borrowing constraints:

ct + st+1 ≤ lt · zt + st · (1 + rt)

st+1 ≥ s,∀t ∈ [[1, 100]]
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9.3.2 Budget constraint binding

A first solving attempt consists in assuming that the budget constraint binds.
We can then obtain the following expression for consumption:

ct = lt · zt + st · (1 + rt)− st+1

Plugging it into the maximization program, we obtain:

max
{lt,st+1}100

t=1

E

[
100∑
t=1

βt · (lt · zt + st · (1 + rt)− st+1)
1−ρ

1− ρ
− ξt ·

l1+φ
t

1 + φ

]

The F.O.C. with respect to labor implies:

lφt · ξt = [lt · zt + st · (1 + rt)− st+1]
−ρ · zt (4)

We can develop the decomposition of consumption if and only if ρ ∈ N.
Indeed, this equation is of form x = (x−α)β ·z. With β /∈ N, is a transcendental
equation.

9.3.3 F.O.C. and Budget clearing

We can now try to compute the F.O.C. first, and then make use of the Bud-
get Constraint. The Lagrangian function associated witht the maximization
program of the agent is:

L(ct, lt, st+1;λt, γt) = E
[ 100∑

t=1

βt · (( c
1−ρ
t

1− ρ
− ξt ·

l1+φ
t

1 + φ
)

+ λt · (lt · zt + st · (1 + rt)− ct − st+1)

+ γt · (st+1 − s))
] (5)

The First Order Conditions are the following:

∂L
∂ct

= 0 ⇐⇒ c−ρ
t = λt

∂L
∂lt

= 0 ⇐⇒ λt · zt = ξt · lφt

∂L
∂st+1

= 0 ⇐⇒ λt = β · E [λt+1 · (1 + rt+1)] + γt

We first note that we must obtain a closed-form solution for ct and lt to
obtain the optimal value of st+1. Indeed, since st+1 is linear in L, we would
need to plug the closed-form solutions of ct and lt in the budget constraint.

Replacing the expression of λt in the two other equation yields:
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c−ρ
t · zt = ξt · lφt ⇐⇒


ct =

[
ξt·lφt
zt

]− 1
ρ

lt =
[
c−ρ
t zt·
ξt

] 1
φ

(6)

And
c−ρ
t = β · E

[
c−ρ
t+1 · (1 + rt+1)

]
+ γt (7)

Assuming that the budget constraint binds, it becomes, as previously seen:

ct + st+1 = lt · zt + st · (1 + rt) ⇐⇒ ct = lt · zt + st · (1 + rt)− st+1

This leads to the following equation system: ct =
[
ξt·lφt
zt

]− 1
ρ

ct = lt · zt + st · (1 + rt)− st+1

⇐⇒[
ξt · lφt
zt

]− 1
ρ

= lt · zt + st · (1 + rt)− st+1

⇐⇒

l
−φ

ρ

t ·
(
ξt
zt

)− 1
ρ

= lt · zt + st · (1 + rt)− st+1

⇐⇒

l
−φ

ρ

t ·
(
zt
ξt

) 1
ρ

− lt · zt − st · (1 + rt)− st+1 = 0

This is a transcendental equation of form xα ·b−x ·y−c = 0, which admits a
solution if and only if −φ

ρ ∈ N. This condition seems unrealistic in our context:

• −φ > 0 implies that labor has a decreasing disutility, which makes the
maximization program absurd.

• −ρ > 0 implies a risk-loving agent, which changes drastically the frame-
work of our model, and would require another whole interpretation.

Note that if we set −ρ ∈ N and further develop the last equation in the
budget constraint binding attempt, we end up with the same condition.
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9.3.4 Backwards solving attempt

If we try to solve it backwards, we now go to the last period. At the last period,
st+1 = s for sure: Since there is no future, the agent will borrow as much as
they can, or will at least not save anything more than what is imposed by the
constraint.

For simplification, let s be fixed such that: s = 0. The new optimality
condition is:

lφt · ξt = [lt · zt + st · (1 + rt)]
−ρ · zt (8)

Although we simplified the term at the exponential of which we have −ρ,
this is still a transcendental equation due to the sum of labor income and income
coming from savings of last period, and the problem remain the same.
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